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Determination of the site of first strand transfer
during Moloney murine leukemia virus reverse
transcription and identification of strand
transfer-associated reverse transcriptase errors

first strand transfer may occur after only a portion of theDeanna Kulpa, Robert Topping and
r repeat is reverse transcribed. The r regions of variousAlice Telesnitsky1

retroviruses differ substantially in length, suggesting that
Department of Microbiology and Immunology, University of Michigan even the shortest natural r [which, at 12 nucleotides, is
Medical School, Ann Arbor, MI 48109-0620, USA much shorter than the 68 nucleotide long r of Moloney
1Corresponding author murine leukemia virus (M-MuLV)] provides sufficient

template to promote the first strand transfer (Coffin, 1996).
Reverse transcriptase must perform two specialized The prevailing model for reverse transcription suggests
template switches during retroviral DNA synthesis. that the first strand transfer occurs only after –ssDNA
Here, we used Moloney murine leukemia virus-based synthesis is completed when reverse transcriptase reaches
vectors to examine the site of one of these switches the 59 end of genomic RNA (Gilboaet al., 1979). This
during intracellular reverse transcription. Consistent model was based in part on the observation that full-
with original models for reverse transcription, but in length –ssDNA is a prominent product in so-called ‘endo-
contrast to previous experimental data, we observed genous reactions’, which involve studying DNA synthe-
that this first strand transfer nearly always occurred sized after the addition of nucleotide substrates to
precisely at the 59 end of genomic RNA. This finding detergent-permeabilized purified virions (Haseltineet al.,
allowed us to use first strand transfer to study the 1979). However, –ssDNA is not detectable in infected
classes of errors that reverse transcriptase can and/or cells unless the infecting virus is defective in RNase H
does make when it switches templates at a defined activity (Coffin, 1979; Blain and Goff, 1995). The apparent
position during viral DNA synthesis. We found that absence of –ssDNA from infected cells suggests either
errors occurred at the site of first strand transfer that full-length –ssDNA is short lived and all –ssDNA
~1000-fold more frequently than reported average that is synthesized performs the first jump, or else that
reverse transcriptase error rates for template-internal discrete-length –ssDNA is not formed during intracellular
positions. We then analyzed replication products of reverse transcription, possibly because the first strand
specialized vectors that were designed to test possible transfer occurs before reverse transcriptase reaches the 59
origins for the switch-associated errors. Our results end of the RNA. Whether the first strand transfer occurs
suggest that at least some errors arose via non- from the 59 end of the genome or instead takes place from
templated nucleotide addition followed by mismatch an earlier, internal position has different implications
extension at the point of strand transfer. We discuss regarding which contacts between enzyme and primer–
the significance of our findings as they relate to the template are important during template switching. Foot-
possible contribution that template switch-associated printing of reverse transcriptase on a simple template has
errors may make to retroviral mutation rates. revealed that the enzyme makes extensive contacts with
Keywords: fidelity/retrovirus/reverse transcriptase the template strand both in front of and behind the growing

point for DNA synthesis, but what contacts are made in
the template switch intermediate is unknown (Woehrl
et al., 1995a,b).

Introduction Two previous studies have examined the site of first
strand transfer during viral replication. These studies testedModels for reverse transcription propose that reverse
a prediction of reverse transcription models: namely, thattranscriptase must perform two specialized template
if one of the two r repeats of a viral RNA were alteredswitches, known as ‘strand transfers’ or ‘jumps’, in order
genetically so that it differed from the other, then theto complete the synthesis of the characteristic two-LTR
sequence of the 39 r (the acceptor template region) should(long terminal repeat) form of retroviral DNA (Figure 1)
be lost and that of the 59 r (donor template) should be(Coffin, 1979; Gilboaet al., 1979). During reverse tran-
found in both DNA strands of both product LTRs. Thisscription, the synthesis of one of two discrete-length DNA
predicted pattern of r inheritance is presented in Figure 1.intermediates has been proposed to precede each strand
Both previous studies that addressed the site of first strandtransfer. This study focuses on the first strand transfer and
transfer made use of viral templates with r region linkerminus strand strong stop DNA (–ssDNA), the putative
insertion mutations and both reports obtained the un-intermediate that precedes it.
predicted finding that 39 r sequences were frequentlyIn the first strand transfer, reverse transcriptase is
inherited. These results suggest that the first strand transferbelieved to switch from a donor template region (termed
may frequently if not always occur prematurely, before‘r’) at the 59 end of genomic RNA to an identical r region
the 59 end of RNA is reached (Lobel and Goff, 1985;repeat at the genome’s 39 end (Coffin et al., 1978;
Ramsey and Panganiban, 1993; Temin, 1993). A thirdSwanstromet al., 1981). Viral RNA repeats are necessary

for the first strand transfer, but it is conceivable that the report provided evidence that the first strand transfer often

856 © Oxford University Press



Strand transfer during reverse transcription

reactions and during viral replication (Perrinoet al., 1989;
Robertset al., 1989; Peliska and Benkovic, 1992; Pulsinelli
and Temin, 1994; Zinnenet al., 1994; Das and Berkhout,
1995; Preston and Dougherty, 1996).

In this report, we generated a series of M-MuLV-based
retroviral vectors with point mutations in their 39 r regions
which permitted us to examine the site of first strand
transfer during intracellular replication. We also studied
the errors which reverse transcriptase commits when it
performs the first strand transferin vivo.

Results

Vectors to examine the position of first strand
transfer
We generated a series of replication-defective retroviral
vectors that allowed us to determine the position of first
strand transfer from an examination of product DNAs.
Our vectors were encoded by derivatives of pBabe puro,
a retroviral vector plasmid that contains the puromycinFig. 1. Model for retroviral reverse transcription. (A) Minus strand
resistance gene (Morgenstern and Land, 1990). In each ofDNA synthesis initiates from a tRNA primer partially annealed to the

pbs (primer binding site) region of the plus sense RNA genome and our vectors, the two r regions differed from each other by
proceeds to the 59 end of genomic RNA, thereby generating minus a single base change: the 59 (donor) r remained wild-type
strand strong stop DNA (–ssDNA). (B) Following RNase H

while a point mutation was introduced into the 39 (acceptor)degradation of r and u5 regions of the resulting RNA–DNA duplex,
r. Each vector’s mutation either destroyed an existing–ssDNA undergoes the first strand transfer to the 39 end of genomic

RNA, where –ssDNA R sequences anneal to complementary 39 r restriction enzyme recognition sequence or else introduced
sequences. Minus strand DNA synthesis resumes, accompanied by a new site (Figure 2). The rationale for using these mutant
RNase H digestion of the template strand. (C) A short vectors was as follows: if first strand transfer occurredoligoribonucleotide that is called the ppt (polypurine tract) persists and

from a position in the donor r that was ‘before’ the siteprimes plus strand DNA synthesis. Plus strand synthesis is halted after
of a mutation in the acceptor r, then the progeny DNAthe portion of the tRNA primer that was originally annealed to the pbs

is copied, thereby generating a DNA called plus strand strong stop would acquire the sequence of the acceptor r. If strand
DNA (1ssDNA). RNase H removes the RNA primers, and transfer occurred from a position ‘after’ the site of a
complementary PBS sequences at each end of the replication

mutation, then viral DNA would possess the sequence ofintermediate are exposed. (D) The annealing of these repeats
the donor r (Figure 2). Hence, the restriction pattern of aconstitutes the second strand transfer. Plus and minus strand syntheses

are then completed (E), with each of the two DNA strands serving as product DNA would indicate where first strand transfer
template for the other’s completion. The completed double-stranded had occurred during its synthesis.
DNA product contains two identical long terminal repeats (LTRs),
each of which consists of the sequence elements U3, R and U5. In this

Examination of the site of strand transferfigure, the star and the circle symbols denote sequence differences
To generate reverse transcription products, vector plasmidsbetween genomic 59 and 39 r regions. Light lines and lower case

letters5 RNA; bold lines and upper case letters5 DNA; CAP 5 were stably transfected into ecotropic packaging cells,
7-methyl-G cap nucleotide. Rat2 cells were infected with vector-containing virions

harvested from the vector-producing cells, and low
molecular weight DNA (which included unintegrated viraloccurs within 23 nucleotides of the 59 end of human

immunodeficiency virus (HIV)-1 RNA (Klaver and DNA) was harvested from the infected cells. We used a
PCR-based assay to analyze progeny DNAs becauseBerkhout, 1994), but no systematic studies of the spectrum

of positions from which first strand transfer occurs nor of this allowed us to examine large populations of reverse
transcription products and avoid sampling biases. Wethe frequency of usage of these positions have been

reported. estimated what portion of progeny DNAs arose from
strand transfer at various positions by digesting the PCRThere has been some doubt as to whether full-length

–ssDNA is competent to undergo the first strand transfer. products with appropriate restriction enzymes (Figure 3),
and we verified our findings by examining the prevalenceThe –ssDNA formed in endogenous reactions may be one

nucleotide longer than its template, implying that a non- of classes of progeny DNAs in individual clones. We
examined the inheritance of sequences in r that were 1, 5,templated nucleotide may have been added (Swanstrom

et al., 1981). If this extended –ssDNA were to jump, then 9 and 14 nucleotides from the U3–R boundary (designated
positions –1, –5, –9 and –14).the 39 end of –ssDNA would be non-complementary to

the acceptor template region (the U3–R boundary) unless Analysis of acceptor r-mutant vector products demon-
strated that the first strand transfer occurred almost exclus-the added nucleotide happened to be complementary to

the acceptor template. However, studies with purified ively at the U3–R boundary. The mutations of the –1
and –5 vectors destroyed anAscI restriction site thatenzymes show that reverse transcriptase is fairly efficient

at extending primer-terminal mismatches (Perrinoet al., straddles the U3–R boundary. If strand transfer occurred
after the completion of –ssDNA, these vectors’ progeny1989). An important component of reverse transcriptase’s

high error rate is believed to be its efficiency at extending DNAs would possessAscI sites; they would not be
cleavable byAscI if strand transfer occurred prematurely.mismatches, a phenomenon observed both in reconstituted
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Fig. 2. Assay for site of first strand transfer. (A) Assay rationale: if a minus strand DNA product (solid line) strand-transfers to a mutagenized 39
acceptor r before copying the donor r past the site of the mutation (indicated by heavy dot) in the 39 r, then the mutation will be copied into product
DNA, as indicated by the presence of the mutation (heavy dot) within the sequence of the DNA whose synthesis was templated after strand transfer
(dotted line). If the first strand transfer occurs after the mutation site, product DNAs will bear the sequence of the 59 donor r, as indicated by the
absence of the mutation (heavy dot) in the DNA strand. (B) Vectors used to assess the position of transfer. Sequences of acceptor template u3–r
junctions. TheAscI site in the wild-type vector is shaded and the newly introduced restriction sites in the other vectors are stippled. Nucleotides in
the test vectors that differ from the wild-type sequence are presented in bold lower case letters. The sequence of completed –ssDNA is indicated at
the bottom of the figure for reference.

We observed no decrease in the amount ofAscI digestion mutations which might occur at a single position in
roughly one out of 104 progeny DNAs, the U3–R sequencefor the progeny of the –5 and –1 mutants as compared

with DNA products of a vector containing wild-type should not change through a single cycle or even multiple
cycles of reverse transcription, regardless of the site ofsequences in both its r regions (henceforth ‘the wild-type

vector’) (Figure 3B). Therefore, it appeared that for most first strand transfer.
Alteration of the U3–R boundary sequence becameDNA products, –ssDNA synthesis was completed prior to

the first strand transfer. This was true even in the case of evident when PCR products of wild-type vector progeny
were found to display an unanticipated restriction digestionthe –1 mutant, for which strand transfer at the U3–R

junction required elongation of a mismatched primer pattern. These DNAs should be fully digestible byAscI,
the restriction enzyme whose site straddles the U3–Rterminus. Observations with –9 and –14 vectors were

consistent with the conclusion that strand transfer generally junction, regardless of the site of strand transfer. However,
a significant proportion (~10%) of these DNAs repro-occurred at the U3–R junction. Only very low levels of

strand transfer prior to –14 were detectable by restriction ducibly failed to be cleaved byAscI (Figure 3). Although
some of the uncleaved product may have resulted fromanalysis of progeny DNAs templated by a vector with

mutations at both –1 and –14, and the site that would incomplete digestion, when undigested products were
excised from gels and re-amplified, the viral amplifiedhave been gained by premature strand transfer on a vector

with an acceptor r mutation at –9 was not detected by undigested products were largely resistant toAscI cleavage
whereas amplified undigested products from proviralrestriction analysis.
plasmids were digested essentially to completion byAscI
(data not shown). Hence, the loss of theAscI site amongIdentification of strand transfer-associated errors

An unexpected finding of these studies was that a signific- ~10% of the amplified wild-type viral DNA products did
not appear to be due to errors byTaq DNA polymeraseant portion of progeny DNAs from the wild-type vector

had lost the wild-type U3–R boundary sequence. Models or other aspects of the PCR process, since repeated rounds
of amplification of pNCA provirus plasmid DNA showedfor reverse transcription predict that, except for rare point
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Fig. 4. Restriction digestion assay examining the frequency of11G
mutation. The origin of PCR-amplified products is indicated at the top
of the figure. Wild-type are amplified reverse transcription products of
the wild-type vector; ‘high pass’ indicates reverse transcription
products of high serial passage infectious M-MuLV cultured as
described in Materials and methods; pNCA indicates amplified
M-MuLV provirus DNA templated by pNCA (Colicelli and Goff,
1988), a provirus plasmid with intact LTRs. Lanes 1–3, uncleaved
PCR products; lanes 4–6, PCR products cleaved withAscI; lanes 7–9,
PCR products cleaved withKasI. Mobility designations are as in
Figure 3.

and all possessed the wild-type sequence throughout the
analyzed region.

The 11G substitution fortuitously introduced aKasI
recognition site, and hence we could examine the fre-

Fig. 3. Analysis of progeny DNA PCR products. (A) Experimental quency of11G by restriction analysis. ThisKasI restric-
scheme. (i) Tipless provirus plasmids were engineered so that their

tion site, which was detectable by restriction analysis intwo R regions differed by single point mutations (indicated with a star
~5% of the wild-type viral PCR products, was not detect-and a circle). The point differences were designed to either introduce a

new or else destroy an existing restriction enzyme recognition site. able among PCR products generated by amplification of
(ii) Transcription of these proviruses within transfected 3T3 cells plasmid DNA, thus demonstrating that11G is not a PCR
yielded viral RNAs that also had two different r regions. (iii) Reverse artifact that results when LTR sequences are amplifiedtranscription of these RNAs generated DNAs with two intact viral

and suggesting that the11G substitution arose duringLTRs. LTR sequences were PCR amplified using U3 sense and U5
antisense primers, one of which was radiolabeled (indicated by *). viral replication (Figure 4). To confirm the rates of product
(B) Restriction analysis of progeny DNA PCR products. Radiolabeled generation suggested by restriction analysis, the frequency
LTR-containing PCR products of DNAs generated by vectors shown in of various classes of reverse transcription products was
Figure 2 were digested with the restriction enzymes indicated at the

also examined among clones of progeny DNAs of thebottom of the figure. Arrows indicate the mobilities of the intact PCR
–1/–14 vector. Although the RNA form of this vectorproducts and of the radiolabeled fragment of restriction enzyme-

digested (‘cut’) PCR products.∆ enhancer indicates the mobility of lacks the AscI restriction site, anAscI site would be
products that had lost one copy of the M-MuLV U3 region 72 bp generated during reverse transcription if first strand transfer
repeat, presumably via homologous recombination during reverse occurred precisely at the U3–R junction and the resultingtranscription (Huet al., 1993). Lane 1, wild-type vector undigested;

primer-terminal mismatch were extended. Thirty-seven oflane 2, wild-type vector PCR products digested withAscI; lane 3, –1
vector products digested withAscI; lane 4, –5 products digested with 44 clones analyzed hadAscI sites, indicating that strand
AscI; lane 5, –9 products digested withScaI; lane 6, –1/–14 vector transfer had occurred precisely at the RNA’s 59 end. This
products digested withMfeI. frequency roughly agrees with the amount ofAscI digestion

observed with the PCR product of viral DNAs. The
remaining seven of the 44 clones all possessed theKas1no evidence ofAscI site loss. In the experiments presented

here, we did not examine the significance of vector-to- site diagnostic of the previously observed11G base
substitution. Products of premature strand transfer wouldvector differences in apparent rates ofAscI site loss.

To examine what alterations preventedAscI cleavage be expected to lack both theAscI and the KasI sites;
however, no clones that lacked both sites were found inof some viral PCR products, wild-type vector PCR

products that were left uncleaved byAscI digestion were this screen. Taken together, these results indicated that the
11G mutation occurred in ~5–10% of the progeny DNAsextracted from polyacrylamide gels and cloned. When 12

separate clones that lackedAscI sites were sequenced, all of the –1/–14 mutant vector and at a similar level among
wild-type vector progeny. This frequency is ~1000-foldwere found to have acquired an identical single base

change—a base substitution at the U3–R boundary that higher than estimates of average base substitution rates at
single sites during one round of M-MuLV replicationwe call 11G—but all were otherwise identical to the

parental sequence. An additional 10 clones that retained (Monket al., 1992; Preston and Dougherty, 1996).
To determine whether any mutations other that11Gthe AscI site after PCR amplification were sequenced,
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restriction site or else had a11G-diagnosticKasI site. In
all of these, only one change in addition to those described
below was detected: a single C→T substitution at –12 in
one subclone that had retained the parental U3–R junction.

Although the11G mutation appeared in ~10% of the
products of a single round of reverse transcription, its
relative abundance did not increase substantially in virus
that had undergone many rounds of replication. This is
evident from a comparison of the extent ofAscI cleavage
of PCR products of serially passaged infectious virus
DNA and of products of a single round of replication
(Figure 4, lanes 7 and 8). Even alterations such as the
deletion of one of the two U3 enhancer repeats, which
would be expected to decrease transcription of a provirus
harboring the deletion, accumulated during serial virus
passage at a significantly higher rate than did11G. This
suggests that the11G mutation must confer a disadvantage
at some stage of replication and that most11G observed
among serially passaged virus products was newly formed
rather than inherited from a parental provirus.

Frequency of premature strand transfer
Premature strand transfer was quite rare in our system.
As described above, little evidence of premature strand
transfer could be detected by restriction analysis of pooled

Fig. 5. Progeny DNA sequences. The sequences of the parental wild- viral DNA PCR products. Although this finding could havetype and –1/–14 vectors are presented at the top. For each of the two
been due in part to partial restriction enzyme digestion, thevectors, the first two product types listed were relatively common and
failure to detect any clones resulting from prematuretheir frequencies were approximated as described in the text. The

remaining products were found rarely and were obtained by first strand transfer among 44 clones of –1/–14 vector products
depleting product pools of common products as described in the text. supported the notion that premature strand transfer was
Numbers in parentheses given for each rare product indicate the rare.number of individual subclones that were found to possess the

To examine further the rare premature strand transferindicated sequence. Differences between each product and the wild-
type vector sequence are presented as bold lower case letters. that did occur in our system, we analyzed pools of viral

DNA products that had first been depleted of the commoner
classes of reverse transcription products. Products ofcommonly occurred at the site of first strand transfer, we the –1/–14 mutant vector were depleted of the productsexamined products that possessed neither theAscI site containing a regeneratedAscI site or the11G mutation

diagnostic of precise first jump nor theKasI site, which by digestion withAscI and KasI. This reduced the pool
was indicative of the11G mutation. Wild-type vector to ~5% of its original size. The remaining uncleaved
DNA products were depleted of these products byAscI products were re-amplified and subcloned, and individual
andKasI digestion. Uncleaved products were gel purified, clones were analyzed for the presence ofMfeI (diagnostic
re-amplified, subcloned and sequenced. Roughly 104

of strand transfer prior to –14),KasI or AscI sites. Thirty-
reverse transcription products were used as startingone of the 47 clones analyzed were found to have either
material in this experiment: calculation of this number is an AscI or a KasI site and hence had resulted from
based on the titer of puromycin-resistant colony formation incomplete digestion of the original PCR products. Another
and an assumption that half the viral DNA synthesized five clones had theMfeI site diagnostic of strand transfer
remains unintegrated (Barbosaet al., 1994). Five clones prior to –14. The remaining 11 were sequenced and the
that possessed neither anAscI nor a KasI site were results are tabulated in Figure 5B. If all clones that
sequenced and all were different from one another, sug-contained a C at position –1 were assumed to have
gesting that no single change other than11G arises resulted from premature strand transfer, then the observed
commonly during first strand transfer of the wild-type frequency of progeny DNAs suggests that strand transfer
vector (Figure 5A). Analysis of –1/–14 vector products before position –14 and between positions –14 and –1
also failed to reveal any frequent changes at11 other was about equally likely. Taken together, these data suggest
than 11G (Figure 5B). Note that because these DNAs that premature strand transfer (defined as strand transfer
had been subjected to as many as 60 cycles of PCR priorthat occurred at least one nucleotide before the completion
to sequencing, it is possible that some or all of the of –ssDNA) was involved in the synthesis of ~1–2% of
rarer sequence classes resulted from errors duringTaq the DNAs synthesized from the –1/–14 vector, an estimate
polymerase-directed synthesis rather than reverse tran-roughly consistent with the frequency ofMfeI digestion
scriptase-directed errors during reverse transcription. As visible among PCR products.
one means of examining the possible contribution ofTaq
polymerase errors to our study, sequencing was performedTesting possible causes of strand
on an additional 14 clones which were derived from the transfer-associated errors
same highly amplified pools that yielded the rare products Our finding that the first strand transfer occurred primarily

from a single template position allowed us to use thisin Figure 5 but that either retained the parental junction
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template DNAs with G at position11. To test this notion,
reverse transcription products of the M11→16 vector
that failed to be cut withMluI were subcloned and 11
were sequenced. Seven of these contained the11G
mutation in place of the terminal T of the parental vector’s
MluI site. This finding demonstrated that dislocation was
not required to generate11G.

Another possible origin of11G was non-templated
nucleotide addition followed by mispair extension. The
only alteration we detected at high frequency at the strand
transfer junctions of wild-type vector products was11G.
If the 11G mutation (a C→G substitution in the DNA
plus strand) were caused by non-templated addition to
–ssDNA before first strand transfer, then the non-templated
nucleotide that was added to –ssDNA would have to have
been a C. Such a finding would differ from observations
in reconstituted reactionsin vitro, where non-templated
purines may be added more readily that pyrimidines (PatelFig. 6. Model for dislocation-mediated generation of the11G
and Preston, 1994). Alternatively, whereas the only changemutation. (A) Correct alignment of –ssDNA with the wild-type vector

acceptor template region and addition of the first post-jump nucleotide we detected among wild-type vector progeny was indic-
(circled). (B) Alternative misalignment of –ssDNA with the wild-type ative of non-templated C addition, it was possible that a
vector and template-directed addition of C (circled). (C) Re-alignment non-templated G might sometimes be added to –ssDNA.of the –ssDNA terminus with the acceptor template and extension of

Non-templated G addition would not be detected becausethe terminal mispair. (D) Fixation of the dislocation-mediated
substitution into product DNA upon completion of plus strand DNA G would fortuitously be complementary to the acceptor
synthesis. template and hence product DNAs resulting from non-

templated G addition prior to the first jump would not
differ from the parental sequence.system to study the errors which reverse transcriptase

makes when it switches templatesin vivo. To do this, we To test the possibility that G was sometimes added as
a non-templated nucleotide, we examined products ofused specialized viral templates to test whether reverse

transcriptase could use the same error mechanisms that it vectors with U at acceptor template position11. Mismatch
extension of the G–U base pair that would result if non-uses in cell-free systems during intracellular replication.

We initially focused our experimentation on determining templated G were sometimes added to –ssDNA prior to
the first jump would lead to11C in the completed reversewhether one of these mechanisms could account for the

11G substitution. transcription product. Consistent with the possibility of
added G, all four clones of the 11 sequenced non-MluIOne common DNA polymerase error mechanism is

simple base misincorporation. Reverse transcriptase occa- site-containing M11→16 progeny DNAs that did not
have 11G were found to possess11C. Although thissionally incorporates template non-complementary bases,

and hot spots for reverse transcriptase-mediated finding strongly supports the notion that non-templated G
was added to –ssDNA prior to the first jump, the11Cmisincorporation have been observed (Bebenek and

Kunkel, 1993). However, estimated rates of reverse tran- substitution in the M11→16 progeny could conceivably
have arisen due to an aberrant premature transcriptionscriptase misincorporation are several orders of magnitude

lower than the rate of11G formation (Preston and start site, which could import an encoded11C from the
upstream LTR. Hence, although transcription initiation atDougherty, 1996). Thus, we ruled that simple misincorpor-

ation was unlikely to cause11G and did not test this pyrimidines is very rare, we tested the possibility that the
11C was caused by an alternate transcription start bypossibility experimentally.

‘Dislocation mutagenesis’ is a class of DNA polymerase constructing a proviral clone containing a T at position
11 in its upstream LTR as well as a T at position11 inerrors that arises through misalignment of the primer

terminus (Kunkel, 1990) and that has been implicated in its downstream LTR. Reverse transcription products of
vectors transcribed from this us11; ds11 (upstream11retroviral context-dependent hypermutation (Bormanet al.,

1995). Dislocation mutagenesis involves template-directed and downstream11) mutant provirus would be predicted
to contain a T at11 regardless of the site of transcriptionalincorporation from a misaligned primer terminus followed

by re-alignment of the primer with the template and then initiation, provided reverse transcription were error-free.
If, during reverse transcription, reverse transcriptase madeextension of the resulting mismatch. The sequence of the

wild-type vector at its u3–r junction is consistent with the a non-templated addition of G to –ssDNA, then the final
outcome would be a T→C substitution at11 in the pluspossibility that a misaligned primer terminus could form

upon strand transfer and cause reverse transcriptase to strand of product DNA. Our us11; ds11 vector was
designed so that a T→C substitution at11 would generategenerate the11G substitution (Figure 6).

To test whether11G might result from dislocation, we anAscI restriction site. When PCR-amplified reverse
transcription products of the us11; ds11 vector weregenerated M11→16, a vector that would be unable to

generate11G via the putative misaligned primer terminus subjected toAscI restriction analysis, 6% were found to
possess a C at position11 (Figure 7). Since this11Cproposed for the wild-type vector (Figure 2). If dislocation

were the sole cause of11G, this vector, which contained would not have been present in either the donor or the
acceptor template, this finding supports the notion that aan MluI site in positions16 through11, would never
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Our findings regarding the site of first strand transfer
conflict with reports in the literature but support prevailing
models for reverse transcription. Our results are also
consistent with unpublished results of J.Zhang and
H.M.Temin, who used RNAs with r regions derived from
two different viruses and who obtained results consistent
with first strand transfer occurring at or near the 59 end
of RNA (J.Zhang, personal communication). Both previous
studies that yielded results different from ours used linker
insertion mutations to show that 59 r mutations can be
lost due to premature jumping (Lobel and Goff, 1985;
Ramsey and Panganiban, 1993). We postulate that such
template alterations may have adversely affected the
vectors’ replication competency and forced premature
strand transfer. This suggestion is consistent with observ-
ations that some alterations to U5 decrease the ability of
the vectors to serve as templates for –ssDNA (Joneset al.,
1994), and that some linker regions are hot spots forFig. 7. Restriction analysis of11U vector products. Radiolabeled PCR

products of DNAs generated from vectors encoded by proviral DNAs retroviral recombination (Pathak and Temin, 1990). One
containing11T substitutions in both their upstream and downstream of the earlier strand transfer reports showed that RNAs
LTRs (vector is designated us11; ds11: lanes 1 and 2) or only their with linker insertions generate short ‘weak stop’ DNAsdownstream LTRs (vector is designated us WT; ds11: lane 3) are

in endogenous reactions in addition to –ssDNA (Lobelshown. Lane 1, undigested; lanes 2 and 3, digested withAscI. Product
mobilities and designations are as in Figure 3. and Goff, 1985), an observation consistent with findings

that template structure can interfere with reverse transcrip-
tion (Klarmann et al., 1993). Strand transfer has beennon-templated G was added to –ssDNA prior to the first

strand transfer. A similar level ofAscI digestion was proposed to occur via a pause and jump mechanism (Xu
and Boeke, 1987; Telesnitsky and Goff, 1993) and aobserved among products of a vector (us WT; ds11)

encoded by a plasmid containing the11T substitution in positive correlation has been observed between the fre-
quency of pausing within a template region and theonly its acceptor r-encoding LTR, suggesting that little if

any upstream initiation of transcription contributed to frequency of template switching within that region during
reverse transcription in purified reactions (Wuet al.,our findings.
1995). The r linker insertions used in the previous reports
may have provided an opportunity for reverse transcriptaseDiscussion
to switch templates prematurely by creating a pause site
before the end of the donor template was reached. In thisIn this study, we examined the site of first strand transfer

and the errors which reverse transcriptase makes during work, we engineered mutations into only the acceptor r
in order to minimize deleterious effects on transcriptionintracellular first strand transfer. We found that the first

jump rarely takes place before the 59 end of the RNA is or the initiation of reverse transcription, and we used point
mutations instead of linker insertion mutations.reached, but that transfer at this site is highly error prone.

All of the mutations we detected at the site of transfer We observed a high level of genetic variation at the
first strand transfer site. Our assays analyzing the U3–Rwere base substitutions: no insertions or deletions were

observed. junction involved PCR amplification of viral sequences,
and hence it is possible, especially for less frequent classesOur results showed premature strand transfer one or

more nucleotides before the completion of –ssDNA of products, that some of the mutations which we observed
were caused byTaq polymerase or another enzyme thatoccurred during the synthesis of ~2% of progeny DNAs.

However, even this low level may be an overestimate copied the viral sequences at some point. However, the
high frequency of certain classes of alterations (e.g.11G,of premature strand transfer frequency. We calculated

premature strand transfer rates using a vector with two which was found in ~10% of the PCR products of wild-
type vector DNAs), paired with the absence of these sortssingle base substitutions. When amounts of products from

virions harboring this vector were compared with those of alterations among serially amplified products of parental
plasmid DNAs, supports the probability that the commonof the wild-type, we observed an ~10-fold decrease in

DNA yield per unit virions (data not shown). We postulate classes of alterations we observed arose during retroviral
replication. It is interesting to note that results withthat this decrease resulted from failure to extend –ssDNA–

acceptor template mismatch. If so, then premature transfer an HIV-based single replication cycle assay also show
mutations at the U3–R junction, and evidence that strandproducts, which would have the same extent of template

complementarity on both the wild-type and double mutant transfer during yeast retrotransposition is error prone has
been reported recently (Gabrielet al., 1996; B.Preston,templates, would remain constant in amount on the two

templates, and the entire observed decrease in product personal communication).
The results presented here support the model that11yield on the mutant template would come from products

that were not premature. These considerations suggest that substitutions arise during reverse transcription via non-
templated addition followed by mismatch extension uponpremature first strand transfer on the native template may

be 10-fold lower than the 2% we observed, or as low strand transfer. Another possibility we considered was that
11G could potentially be templated by the 7-methyl-Gas 0.2%.
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cap present on mRNAs and viral genomic RNAs (Coffin, (Stoyeet al., 1991). How do we reconcile our results with
these previous findings? The authors of one study point1996). Avian myeloblastosis virus reverse transcriptase

can add a cap-complementary C residue during cDNA out that template switching from template ends (‘forced
copy choice’ recombination) might differ from switchingsynthesis on mRNAin vitro, but not when the RNA has

been de-capped (Vollochet al., 1995). However, studies from a template-internal region (‘copy choice’ recombin-
ation) (Zhang and Temin, 1994). However, studies inwith purified enzymes and model primer–templates have

demonstrated that11G can arise at template switch reconstituted model systems designed to examine copy
choice-type recombination found low fidelity at template-junctions in the absence of a 7-methyl-G cap (Peliska and

Benkovic, 1994), and our detection of11C mutants internal switch junctions as well (Wuet al., 1995). Hence,
an alternate explanation for why our results are moredemonstrates that not all additions to –ssDNA could be

cap-templated. similar to the observations from reconstituted reactions
than to those of the previously studied virus-generatedThe most frequent change we detected among wild-

type vector products appeared to result from non-templated switch junctions may be that thein vivo switch junctions
that were sequenced were a biased sample. When weC addition and subsequent C–C mispair extension. In

reconstituted reactionsin vitro, the most commonly added forced mispair extension upon strand transfer with the
non-templated nucleotides are purines, and C–C mispairs–1 r mutant, the yield of product DNA dropped ~10-fold
are extended particularly poorly by reverse transcriptasesrelative to that of the wild-type vector. These findings
(Perrino, 1989; Ricchetti and Buc, 1990; Patel and Preston,suggest it is possible that switch intermediates with added
1994). However, studiesin vitro have shown that the acceptor template non-complementary nucleotides tend to
frequency with which nucleotides are added can differ fail to complete recombinogenic template switches during
from the frequency at which they are embedded into viral replication, while those without acceptor template
product DNAs. Furthermore, the rate at which mismatches non-complementary nucleotides succeed. The unaltered
are embedded does not appear to correlate with the easejunctions observed amongin vivo products may thus
of mispair extension, although some of the apparent reflect a bias among completed DNAs for those whose
paradox between what nucleotides become embedded andswitch intermediates had had 39 termini complementary
what nucleotides appear to be added preferentially may to acceptor template regions. In contrast to recombinational
be a function ofin vitro reaction conditions (Peliska and template switches, which are not required in order to
Benkovic, 1992, 1994; B.Preston, personal communic- complete retroviral DNA synthesis, the first strand transfer
ation). In our studies, we were not measuring what is an obligatory step and all retroviral DNAs are the result
nucleotides reverse transcriptase adds to –ssDNA butof this strand transfer process. In the work presented here,
rather what nucleotides became embedded into productwe demonstrate that this first strand transfer during M-
DNAs. MuLV reverse transcription nearly always occurs from a

Reverse transcriptase template switches are not onlysingle template position and that strand transfer at this
necessary steps in the process of reverse transcription butposition is highly error-prone. The question remains of
are also critical in retroviral genetic recombination, since whether template switching at any other single position,
reverse transcriptase frequently performs template if forced to occur, would be as error prone as that reported
switches that can lead to retroviral recombination in here, or if this level of infidelity is a specific property of
addition to the two obligatory strand transfers (Huet al., the first strand transfer.
1993; Telesnitsky and Goff, 1993). It has been proposed
that recombinogenic template switches may be highly
mutagenic (Peliska and Benkovic, 1992; Patel and Preston,Materials and methods
1994; Wuet al., 1995). This suggestion is based on the

Plasmid constructionobservation that mutations are very common in DNAs
Tipless provirus plasmids.An EcoRI site was introduced into the middleproduced by purified reverse transcriptase that has been
of the U5 region of the downstream LTR of the replication-competent

forced to switch templates (Peliska and Benkovic, 1994; M-MuLV clone, pNCA (Colicelli and Goff, 1988), by standard PCR-
Wu et al., 1995). Like many other DNA polymerases, mediated site-directed mutagenesis. Using thisEcoRI site as one end

and theNheI site in U3 that is 23 bp from the ‘left’ edge of M-MuLV’sreverse transcriptase frequently will add an additional non-
upstream LTR as the other end, ‘tipless’ virus-encoding sequences weretemplated nucleotide when it reaches the end of a template
subcloned intoXbaI- plusEcoRI-cleaved pUC 18. Viral protein-encodingin vitro: usually a purine (Clark, 1988). If this extended
regions were then removed from this tipless provirus plasmid and

DNA switches to a secondary, acceptor template and replaced with the puromycin resistance gene by replacing sequences
synthesis continues, the nucleotide added at the end offrom theBsrGI site that is early ingag to theClaI site that is towards

the end ofenv with the BsrG1–ClaI puro resistance gene fragment ofthe donor template can become fixed into the product
pBabe puro (Morgenstern and Land, 1990). The resulting plasmidDNA. Because the rate at which reverse transcriptase adds
contained the U3–R junction site of pNCA, which is different from thenon-templated nucleotides in purified reactions is several corresponding sequence in pBabe puro and the originally published

logs higher than the rate of mismatch insertion at template- sequence for M-MuLV (Shinnicket al., 1981; Lobel and Goff, 1985).
internal positions in reconstituted reactionsin vitro, it has Tipless vector plasmids were used in the experiments presented here so

that they would be distinguishable from reverse transcription products.been suggested that recombination might generally be
These plasmids retained sufficient LTR sequences for expression ofmutagenic (Patel and Preston, 1994). However, one study
vector RNAs, but lacked intact LTRs. The progeny DNAs templated by

that involved sequencing 29 recombination junctions these vectors had intact LTRs generated during reverse transcription.
generated during intracellular reverse transcription

Acceptor template region mutants. All mutations were introduced byrevealed no template switch-associated mutations (Zhangstandard PCR-mediated site-directed mutagenesis, confirmed by dideoxy
and Temin, 1994), and another study that examined 18 sequencing, and introduced onClaI–NheI restriction fragments into the

puroR tipless provirus plasmid.recombination junctions found a mutation in only one
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